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The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent
on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated
mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we
demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find
that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as
well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they
predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus,
such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice.
Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active,
and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted
into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these
studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as
templated mutagenesis using local and distant regions of the genome. The Journal of Immunology, 2022, 208: 2141�2153.

To generate an effective humoral immune response, diver-
sity in Ag-specific Abs is paramount. Such diversity is
used as a raw substrate in the germinal center (GC) reac-

tion in which high-affinity Abs are selected at the expense of
their weaker-binding kin (1). For this Darwinian microcosm to
proceed effectively, GC B cells divide and mutate rapidly, allowing
for a new round of selection to occur. Repeated cycles of this pro-
cess lead to the characteristic high-affinity Abs of the humoral
immune response.
To generate diversity between cycles of the GC reaction, GC

B cells engage in a mutagenic program known as somatic hypermu-
tation (SHM) that is chiefly mediated by activation-induced cytidine
deaminase (AID) (2�5). This enzyme controls two distinct pathways
of mutagenesis: canonical SHM and gene conversion (2, 3). In canoni-
cal SHM, AID targets the Ab loci and deaminates cytosines that are
then processed by multiple repair enzymes leading to de novo somatic
mutations (4, 5). In gene conversion, activity of the AID enzyme and
subsequent processing can lead to a form of mutagenic repair that cop-
ies homologous sequences, resulting in mutations templated from such
sequences (3, 6).

Although it is known that gene conversion can occur in murine
and human B cells, this process is often regarded as infrequent, and
exact frequencies of gene conversion remain unknown (7�9). Prior
approaches to quantitate the contribution of gene conversion to SHM
have suffered from reliance on imprecise measures of gene conver-
sion tracts, limitations on what sequences could serve as gene conver-
sion donors, as well as false positives (7, 10�13). In this study, we
present data to show the genome-wide contribution of templated
mutagenesis (i.e., gene conversion) using sequences from LAIR1-
insert Abs and human donors. We do this via a novel computational
script known as template recognition via Monte Carlo experiments
(TRACE) that relies on the BLASTn (14) script to identify likely
gene conversion donors. We then supplement our findings with pub-
lished human GC B cell data, showing that TRACE-predicted gene
conversion donors are predictive of open chromatin peaks, RNA tran-
scription, and chromosomal orientation of GC B cells.
We report in the present study that TRACE identifies templated

mutations in both somatically mutated, rearranged IGHV gene seg-
ments as well as in non-Ig sequences at the IgH locus. These
mutations are found to account for 0.7% of the total mutation load.
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Templates identified by TRACE cluster intrachromosomally and
interchromosomally between individuals. Analysis of these regions
demonstrate that TRACE donors are in areas in proximity to open
chromatin, which are transcriptionally active, and are in spatial
association with the IgH locus during the GC reaction. Further-
more, TRACE-identified tracts in somatically mutated genes are
found to be in association with overlapping AID hotspots. We also
validate TRACE’s outputs through detailed false-positive and tech-
nical artifact analysis.

Materials and Methods
TRACE script

TRACE is a custom script written in MATLAB (v.2018a) and uses nested,
iterative BLASTn to identify donor templates for somatically mutated
sequences at the genome scale. FASTA files containing a germline reference
and somatically mutated sequences are parsed for user-defined mutation clus-
ters (in this study, eight or more mutations over 38 bp). A preprocessing step
is included to remove insertion/deletion events from the analyzed sequence
sets. Subsequences containing the mutation cluster are split into 38-bp win-
dows that each contain eight or more mutations. Each of these windows is
passed into BLASTn (word size, 11; maximum high-scoring segment pairs,
one; maximum target sequences, one) against either the human genome
(GRCh38) or the mouse genome (GRCm38). The window with the greatest
bit score is stored and passed into two sequential Monte Carlo analyses, with
entry into the second contingent on the results in the first. In the first Monte
Carlo analysis, the effect of the mutation’s identity in the window is assayed
by randomizing the identity of the mutated bases, generating a window with
different combinations of mutations. One thousand simulated windows are
passed into BLASTn and their respective bit scores are used to build a popu-
lation to which the original stored window is compared. If the Z score of the
original window is $1.645, then the window is passed into the second
Monte Carlo analysis, wherein the effect of the location of mutations is
assayed. In this study, the numbers of mutations in the original window are
randomly shuffled over the length of the window. As before, 1000 simulated
windows are generated and passed into BLASTn to generate a second popu-
lation of bit scores. If the Z score of the original window is $1.645 as com-
pared with this second population, the original BLAST hit is stored as a
TRACE hit. This process is iterated through all sequences until all mutation
clusters have been analyzed.

Alongside the analysis of the input dataset, a series of 10 “background”
datasets are generated in which the original FASTA file is analyzed for
mutation clusters as above. The number of mutation clusters and the corre-
sponding number of mutations per cluster per sequence is then randomized
such that the locations of the mutation clusters are randomly placed along
the length of the sequence. Each of these background sets undergoes the
same core analysis above involving cluster identification, subsequent Monte
Carlo analyses, and recording of TRACE hits that pass both Monte Carlo
analyses.

Upon completion of analysis of the background data and the original data-
set, TRACE hits are passed through BLAST and the corresponding template
is locally aligned. The number of mutations accounted for by the top BLAST
hit is calculated and stored for each of the TRACE hits in the modeled and
original datasets. Other data are also gathered at this time, including the per-
cent identity between the TRACE hit and its corresponding template, the
strand to which the hit localizes, the gene name (if any), and whether the
identified template is an exon or intron.

Finally, TRACE hits from the original data are compared with that of the
background by placing the data in bins composed of the combination of
length, the number of mutations explained by the TRACE-identified tem-
plate, and the percent identity of the mutation cluster window to the identi-
fied template. The frequency of hits in each bin is counted for the original
and the background datasets. Any bins unique to the original data are defined
as true hits. For bins in both datasets, original data TRACE hits are only
retained when the frequency of the original bin is greater than the frequency
of the modeled bin plus 2 SD of all the frequencies of bins in the modeled
dataset. Reported data from TRACE are cleaned such that overlapping
TRACE hits that map back to the same template are removed.

Subjects

Three healthy subjects vaccinated with trivalent influenza vaccine (701, 702,
752) and one systemic lupus erythematosus (SLE) patient experiencing an
acute flare (730) were enrolled in this study at Emory University between
2013 and 2015. Cell populations examined include class-switched memory

B cells (701, 702) or circulating Ab-secreting cells (730, 752). Healthy sub-
jects received the influenza vaccine as part of routine medical care. SLE
patient recruitment outside the annual influenza season and patient history
were used to determine absence of recent immunization or likely natural
exposure to influenza. PBMCs were isolated on days 6�9 for vaccination
subjects. All studies were approved by the Institutional Review Boards at
Emory University School of Medicine. The SLE patient fulfilled four or
more criteria of the modified American College of Rheumatology classifica-
tion and was routinely evaluated by expert rheumatologists at the Emory
Lupus Clinic. The SLE patient was classified as having a moderate�severe
flare according to the SELENA-SLEDAI flare index and were on minimal
immunosuppression at the time of flare (only hydroxychloroquine and/or
<10 mg/d prednisone or equivalent glucocorticoid).

Sequences acquired from 10x Genomics (10x) were downloaded from the
datasets page (https://www.10xgenomics.com/resources/datasets). The seven
datasets used in this study are as follows: 1) human B cells from a healthy
donor, 1000 cells: Multi (v2); single-cell immune profiling dataset by Cell
Ranger 5.0; 2) non�small cell lung cancer tumor, single-cell immune profil-
ing dataset by Cell Ranger 5.0; 3) PBMCs of a healthy donor (Next GEM
v1.1), single-cell immune profiling dataset by Cell Ranger 3.1.0; 4) human
PBMCs from a healthy donor, 10,000 cells (Multi v2), single-cell immune
profiling dataset by Cell Ranger 4.0.0; 5) PBMCs of a healthy donor (Next
GEM v1.1, 150 × 150), single-cell immune profiling dataset by Cell Ranger
3.1.0; 6) PBMCs of a healthy donor: Ig enrichment from amplified cDNA,
single-cell immune profiling dataset by Cell Ranger 3.0.0; and 7) human
B cells from a healthy donor before and after flu vaccination (Multi v2),
single-cell immune profiling dataset by Cell Ranger 5.0.0.

Multicolor flow cytometry and sorting

Mononuclear cells were isolated from peripheral blood using Ficoll density
gradient centrifugation and stained with the following anti-human Ab stain-
ing reagents: IgD-FITC, CD3-Pacific Orange, CD14-Pacific Orange, CD24-
PE-A610 (Invitrogen, Camarillo, CA); CD19-allophycocyanin-Cy7, CD38-
Pacific Blue, CD23-PE-Cy7, CD21-PE-Cy5, CD27-PE (BD Pharmingen,
San Diego, CA); and CD138-allophycocyanin (Miltenyi Biotec, Auburn,
CA). Approximately 30,000 cells were collected for either switched memory
B or plasmablast populations using a BD FACSAria II (BD Biosciences, San
Jose, CA) and sorted directly into RLT lysis buffer (Qiagen, Valencia, CA).

Next-generation sequencing of the IgH repertoire

Total cellular RNA was isolated from each sample using the RNeasy Micro
kit by following the manufacturer’s protocol (Qiagen, Valencia, CA). Approxi-
mately 2 ng of RNA was subjected to reverse transcription using the iScript
cDNA synthesis kit (Bio-Rad, Hercules, CA). Aliquots of the resulting single-
stranded cDNA products were mixed with 50 nM VH1�VH7 FR1-specific
primers and 250 nM Ca-, Cm-, and Cg-specific primers preceded by the
respective Illumina Nextera sequencing tag (sequences listed below) in a
25-ml PCR reaction (using 4 ml of template cDNA) using Invitrogen’s
high-fidelity Platinum PCR SuperMix (Invitrogen, Camarillo, CA). Ampli-
fication was performed with a Bio-Rad C1000 thermal cycler (Bio-Rad,
Hercules, CA) with the following conditions: PCR1: 95◦C for 5 min;
35 cycles of 95◦C for 30 s, 55◦C for 30 s, and 72◦C for 30 s; 72◦C for 5 min.

A second PCR was used to add Nextera indices with the following condi-
tions: PCR2: 72◦C for 3 min, 98◦C for 30 s; five cycles of 98◦C for 10 s,
63◦C for 30 s, and 72◦C for 3 min.

Ampure XP beads (Beckman Coulter Genomics, Danvers, MA) were
used to purify the products, and they were subsequently pooled and dena-
tured. Single-strand products were sequenced on a MiSeq (Illumina, San
Diego, CA) using the 300 bp ×2 v3 kit. Primers for PCR1 were as follows:
forward: VH1a, 59-CAGGTKCAGCTGGTGCAG-39; VH1b, 59-SAGGTC-
CAGCTGGTACAG-39; VH1c, 59-CARATGCAGCTGGTGCAG-39; VH2,
59-CAGGTCACCTTGARGGAG-39; VH3, 59-GGTCCCTGAGACTCTCC-
TGT-39; VH4, 59-ACCCTGTCCCTCACCTGC-39; VH5, 59-GCAGCTGG-
TGCAGTCTGGAG-39; VH6, 59-CAGGACTGGTGAAGCCCTCG-39; VH7,
59-CAGGTGCAGCTGGTGCAA-39; reverse: Cm, 59-CAGGAGACGAGGG-
GGAAAAGG-39; Cg, 59-CCGATGGGCCCTTGGTGGA-39; Ca, 59-GAAG-
ACCTTGGGGCTGGTCG-39; F tag, 59-TCGTCGGCAGCGTCAGATGTG-
TATAAGAGACAG-39; R tag, 59-GTCTCGTGGGCTCGGAGATGTGTA-
TAAGAGACAG-39.

Bioinformatics analysis of next-generation sequencing data

An in-house�developed informatics pipeline was used for initial quality filter-
ing and clonal clustering analysis of sequencing data. After paired-end reads
were joined, sequences were filtered based on a length and quality threshold.
Sequences <200 bp and sequences with poor overlaps (>8% difference in
linked region) and/or a high number of base pairs below a threshold score
(sequences containing >15 bp with <Q30 score, 10 bp with Q20 score, or
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any base pair with <Q10 score) were excluded from further analysis. Isotypes
were then determined by analysis of the C region segment of each sequence,
and then sequences were aligned using the data provided by IMGT/HIGHV-
QUEST (http://www.imgt.org/HIGHV-QUEST/) (15). See Tipton et al. 2015
(16) for further reasoning and analysis.

Overlapping and nonoverlapping AID hotspot analysis

Analysis of overlapping AID hotspots was performed by identifying locations
that contain the WGCW motif, where the mutated base is underlined. As
these sites are palindromic, locations for these hotspots were counted twice,
once for each strand. To determine whether TRACE recipient sites were
located proximally to overlapping hotspots, the average shortest distance
between a given TRACE recipient site and any given overlapping AID hot-
spot was calculated. To determine significance, each dataset had the location
of TRACE recipient sites randomized across the length of the sequence, and
the average shortest distance was calculated over 1000 iterations. Z scores for
each individual dataset were determined in comparison with each sequence
set’s randomized set. Z scores were combined into a single statistic using
Stouffer’s Z method. This method was repeated for analysis of WRC motifs,
which were defined as WRC motifs that did not include any WGCW sites.
Modeled sets were not included in this analysis, as clusters of mutations in
these sets were randomly distributed across the span of the IGHV sequence.

Clustering analyses

Clustering was performed either on the chromosomal level or on the base
pair level and done using a permutational or Monte Carlo approach, respec-
tively. For permutational approaches, equal numbers of TRACE hits were
randomly assigned to a chromosome with weights to adjust for differences
in chromosome size. The frequency of TRACE hits per chromosome bin
were tallied and recorded over 1000 iterations, and the frequency of TRACE
hits at their original positions were compared with the permuted pool for
each chromosome. Z scores were determined by comparing the original
TRACE hit frequency to that of each chromosome in the permutated pool.
Z scores were combined into a single statistic using Stouffer’s Z method.

For Monte Carlo approaches, equal numbers of TRACE hits were ran-
domly assigned to specific locations in the genome, with weights given to
account for differences in chromosome size, as above. Counts were deter-
mined for TRACE hits that occurred within 1 kb of each other over 1000
iterations of randomly assigned TRACE hits. Counts were also determined
for original TRACE hits, and the original count was compared with the pop-
ulation of counts from the randomly assigned pool.

In each approach, modeled sets were used to control for the innate back-
ground generated from the TRACE methodology. These modeled sets were
matched to each sequence set analyzed and control for the number of muta-
tions and clusters found in each set. Each modeled set was run through
TRACE with identical settings to the original data.

GC transcript analysis

GC B and naive B cell RNA sequencing (RNA-seq) data were obtained from
GSE84022 (17), and reads per kilobase transcript per million mapped reads
(RPKM) values were averaged between replicates. GC B cell�upregulated
transcripts were defined by having a RPKM value greater than that of naive
B cells plus 2 SD. Downregulated transcripts were similarly defined, except
that the RPKM value for transcripts in GC B cells was less than that of naive
B cells minus 2 SD. Permutational analysis was done by randomly selecting
an equal number of genes and assaying how many genes in this set were pre-
sent in either fraction for 1000 iterations. Original values were compared with
those generated during the permutation process to yield Z scores. RPKM val-
ues associated with each gene were used in the analysis to yield Z scores for
RPKM values.

Hi-C analysis

GC B and naive B cell Hi-C data were obtained from GSE84022 (17), and
interchromosomal interactions were kept when one anchor overlapped the
IgH locus and was supported by at least five reads, representing interactions
>98% of IgH interacting pairs. Cumulative plots of interchromosomal inter-
actions were obtained by taking each examined locus and the closest distance
to an anchor that was found to interact with the IgH locus. These distances
in kilobases were log10 transformed and plotted with an empirical cumulative
distribution function. Kolmogorov�Smirnov tests were used to test the sig-
nificance of the observed differences in the distributions between samples.

Statistical analysis

Tests for significance used in this study include a paired t test, Tukey post
hoc test, one-sample Z test, Stouffer’s Z method, and a Kolmogorov�Smir-
nov test. Paired t tests were used when comparing percent mutations and

Z scores between original and matched modeled sets. A Tukey post hoc test
was used in analysis of TRACE output types. For t tests and the Tukey post
hoc test a two-tailed a of 0.05 was used. One-sample Z tests were used in
either permutational or Monte Carlo analyses. For all tests, significance was
set at a Z score of 1.645, which corresponds to a one-tailed a of 0.05. In
cases where multiple Z scores were combined for an aggregate statistic, only
samples belonging to the same group were combined, and Stouffer’s
Z method was used. As in the one sample Z test, a cutoff Z score of ±1.645
was used to determine significance, with direction being chosen depending on
the analysis. Kolmogorov�Smirnov tests were performed with a two-tailed
a of 0.05.

Data and materials availability

All data used in this study are available from the Sequence Read Archive
under accession numbers SRR17118783�SRR17118786 (https://www.ncbi.
nlm.nih.gov/sra). The TRACE source code is available at https://github.com/
GDale1/Templated-Mutation-Detection-with-TRACE as well as at https://
zenodo.org/record/5759792#.Yaz-5dDMKUk.

Results
Somatic mutations in LAIR1 inserts display similarity to other
genomic regions

We have previously demonstrated that small clusters of mutations
(two or more mutations over 8 bp) in somatically mutated sequences
at the IgH locus are consistent with templated events (12). Our anal-
yses have also demonstrated that the somatic mutation clusters pre-
sent in the broadly neutralizing anti-malarial LAIR1-containing Abs
reported by Pieper et al. (18) and Tan et al. (19) (Fig. 1A) are con-
sistent with templated events. These LAIR1-containing Abs are atyp-
ical Abs that result from a templated insertion event of a segment of
the LAIR1 gene on chromosome 19 into the CDR3 of an Ab rear-
rangement on chromosome 14 and are subsequently mutated to gain
broad anti-malarial binding capacity. Interestingly, we observed that
although many clusters of mutations in somatically mutated LAIR1
appeared to have templates corresponding to IGHV genes, there
were multiple instances of heavily mutated regions that did not have
a corresponding IGHV template. We performed BLASTn searches
on these subsequences and found that these sequences had matches
to distant genomic regions (Fig. 1B). Local alignment of resultant
matches with the somatically mutated LAIR1 segment and the
LAIR1 germline subsequence revealed that these matches account
for several mutations found in the mutated subsequence and retain
general homology to the LAIR1 segment (Fig. 1B). This raised the
possibility that these clustered somatic mutations may derive from
distant genomic regions but did not answer whether such matches
were significant. Indeed, it remained a likely possibility that somatic
mutations themselves could produce spurious alignments given the
size and scale of the human genome.

TRACE analysis of LAIR1-containing Ab sequences

To address this problem, we generated a custom MATLAB script
called TRACE (Fig. 1C). This script was designed to determine
whether clusters of mutations of a given density are statistically
likely to have occurred through templated mutagenesis. In brief,
TRACE operates through a nested system of Monte Carlo simula-
tions that identifies clustered mutations (defined as at least eight
mutations over 38 bp), and subsequently iterates and analyzes out-
puts of the BLASTn algorithm (Supplemental Fig. 1). The script
conducts simulations to determine 1) whether the identity of the muta-
tions within the cluster is important to produce a distant alignment, 2)
whether the local position of the mutations relative to one another is
important to produce the distant alignment, and 3) whether the resul-
tant alignments are statistically different from if the germline sequence
were randomly mutated. Only results that passed all three tests were
considered for further analysis.

The Journal of Immunology 2143

http://www.imgt.org/HIGHV-QUEST/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://github.com/GDale1/Templated-Mutation-Detection-with-TRACE
https://github.com/GDale1/Templated-Mutation-Detection-with-TRACE
https://zenodo.org/record/5759792#.Yaz-5dDMKUk
https://zenodo.org/record/5759792#.Yaz-5dDMKUk
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.2100434/-/DCSupplemental


FIGURE 1. Somatically mutated LAIR1 inserts have regions of clustered mutations that match distant genomic regions. (A) Schematic of the generation of
LAIR1-containing Abs described by Tan et al. (19) and Pieper et al. (18). Germline V(D)J rearrangements acquire LAIR1 insertions in CDR3 that are somati-
cally diversified and confer Ag binding. (B) Somatically mutated sequences obtained from human donor E were analyzed for small clusters of templated
mutagenesis events as in Dale et al. (12) and are depicted as a highlighter plot. In the panel, a single sequence is shown; black bars indicate mutations at a
given position, whereas red regions indicate regions that match short subsequences in the IGHV germline repertoire. Selected subsequences containing
regions of clustered mutations (indicated by brackets) were run through BLASTn. Alignments of germline LAIR1, somatically mutated LAIR1, and the top
BLASTn hit identified for that subsequence are shown. Gene names and E-values for searches conducted are shown for corresponding BLASTn hits. (C) An
overview of the TRACE pipeline is shown. For each sequence, local clusters of mutations are identified by comparison with a germline sequence. Sequences
with a qualifying cluster (eight mutations in 38 bp) are screened for the best window over the 38 bp that incorporates the cluster. Each of these windows is
passed into BLASTn and the window with the highest bit score (i.e., the best alignment) is selected. Subsequently, two different Monte Carlo simulations are
performed on this window and the bit score of the window is compared with the populations of bit scores from the Monte Carlo simulations. If the bit score
of the window is >95% of each Monte Carlo population, the BLASTn result of the window is recorded. Simultaneously, 10 “background” datasets are gener-
ated that mimic the somatically mutated sequence, in both number of mutations and mutation clusters. Identical window selection and Monte Carlo simula-
tions are performed with these background data. Significant BLASTn results are recorded. Data from the original sequence and the background sets are
compared and BLASTn hits from the original sequences that exceed background (background data) are kept to produce a TRACE output. A detailed explana-
tion of each step is depicted in Supplemental Fig. 1.
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Application of the TRACE pipeline to the LAIR1 and IGHV
sequences present in Pieper et al. (18) and Tan et al. (19) revealed sig-
nificant donor templates scattered around the genome (Fig. 2A, 2B).
Notably, we observed that LAIR1 TRACE outputs localized to chro-
mosome 19 in four donors and, similarly, IGHV TRACE outputs
localized to chromosome 14 in all five donors, and to chromosome 15
in four donors. To describe the quality of these TRACE outputs, we
considered the following two characteristics to be most relevant: the
bit score assigned to the TRACE output, and the number of mutations
within a given region explained by TRACE. The bit score is a product
of the original BLASTn search and is reflective of the quality of the
alignment. Thus, an ideal TRACE output is one with a high bit score
and number of mutations explained. These outputs are most suggestive
of gene conversion.
TRACE analysis of the LAIR1-containing Abs revealed a total of

48 outputs for both the somatically mutated LAIR1 insert as well as
the corresponding IGHV segments. These outputs varied in quality,

with high-quality TRACE outputs being relatively rare (Fig. 2C, 2D).
We observed that TRACE outputs were generally higher in quality in
the IGHV segment as compared with LAIR1 outputs. These TRACE
outputs together accounted for 2�15% of mutations present in the
somatically mutated LAIR1 and 3�15% of mutations for the somati-
cally mutated IGHV segments (Fig. 2E). Analysis of the TRACE out-
puts revealed that gene-encoding regions were the primary contributor
(Fig. 2F). Notably, IGHV pseudogenes were detected by TRACE as
gene conversion donors but were restricted only to somatically
mutated IGHV segments.
TRACE outputs were observed to cluster by chromosome for

the LAIR1 and IGHV segments. Interestingly, donor templates clus-
tered by chromosome with 22 out of 33 (66.7%) donors for the
IGHV mutations originating intrachromosomally from chromosome
14 (Z 5 19.9, p < 0.001) and 7 out of 15 (46.7%) donors for
the LAIR1 mutations originating interchromosomally from chromo-
some 19 (Z 5 13.2, p < 0.001) (Fig. 2G). Further analysis revealed

FIGURE 2. TRACE-identified regions of the genome contribute to somatic mutagenesis of IGHV/LAIR1 sequences. (A and B) Circos plots for (A) LAIR1
and (B) corresponding IGHV of multiple human donors (gray concentric circles). Human donors are annotated for each concentric circle and donor names
correspond to those in Tan et al. (19) and Pieper et al. (18) (C and D) Summary data of TRACE outputs from LAIR1 (C) and IGHVs (D). Shown are density
plots depicting the relative frequency of TRACE outputs as a function of alignment quality (bit score) and the number of explained mutations in the somati-
cally mutated motif (mutations explained). Size of data points in the plot depict relative frequency compared with other data points in the plot. Larger points
indicate higher frequency. (E) Shown are the percent of mutations that derive from a TRACE-identified donor sequence in either LAIR1 or IGHVs. (F) Bar
plot depicting the types of TRACE-identified donor tracts in the LAIR1 or IGHV gene segments. (G) Stacked bar graph of the percent of TRACE hits per
chromosome. (H) Percent of an equal number of randomly scattered TRACE hits (shuffled, n 5 1000) and of the data generated from the LAIR1 rearrange-
ments that cluster within 1 kb of one another. ****p < 0.0001.
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that donor tracts not only clustered at the chromosomal level, but also
at the nucleotide level, with ∼40% of all TRACE outputs for LAIR1
derived from independent samples exhibiting significant clustering
within 1 kb of one another (Z 5 189.7, p < 0.001) (Fig. 2H). These
clustered regions of donors were strikingly different depending on
whether the recipient sequence was the LAIR1 insert or the IGHV
gene segment, suggesting that sequence homology was the main deter-
minant of donor sequences. Our observation that these donor templates
cluster within a narrow genomic region and account for mutations
across multiple samples suggested that there are preferred sites that
serve as donor sequences.

False-positive analysis of TRACE pipeline

Although these results were suggestive of templated mutagenesis, it
was possible for these results to be the product of false positives, as
had been shown to be of concern during large-scale analyses such
as these by Fukuyama et al. (13). This was especially of concern
given that TRACE outputs clustered on chromosomes where each
segment is found (e.g., IGHV donors were found on the chromosome
containing germline IGHVs). To address the contributions of false
positives we investigated the somatically mutated Ab repertoire of
bulk-sequenced class-switched memory B cells (CD191IgD−CD271)
or circulating Ab-secreting cells (CD191IgD−CD27hiCD38hi) from
four human donors. Additionally, to assess and control for PCR
crossover, we also investigated seven public single-cell datasets pro-
vided by 10x and filtered sequences for high-confidence reads that
were unlikely to be due to PCR or another artifact. These were cho-
sen over the LAIR1 Abs due to the small sample size of the LAIR1
sequences compared with that of the memory pool of each donor
and the 10x dataset (average number of analyzed sequences per
donor n 5 9.67, 66,137, and 15,268, respectively).
To accurately model for false positives, we leveraged the back-

ground set that is generated during each TRACE run. The back-
ground set mimics the input sequence set in terms of sequence
number, mutation load, and number of local mutation clusters ana-
lyzed by TRACE but differs in where each mutation cluster is
located and the identity of mutations within a given cluster. Thus,
the background set retains key characteristics of the original dataset
but should not produce significant TRACE-identified mutation donors.
Therefore, any TRACE outputs generated by a model set that is
passed through the TRACE analysis are, by definition, false positives.
From the four human donors, we selected three IGHV datasets

(IGHV1�18, IGHV3�15, and IGHV5�51) from three donors (n 5 9,
total sequences analyzed n 5 14,378). For each analysis, the original
dataset was run in parallel with a background dataset generated during
TRACE analysis of the original (Supplemental Fig. 2), which we
refer to as the modeled set. In each of these modeled datasets, we
obtained TRACE outputs indicating the contributions of false posi-
tives to our script. Given that the TRACE analysis pipeline relies on
cleaning spurious outputs during the binning phase (Supplemental
Fig. 1), we hypothesized that false positives would be a function of
the total number of binned inputs. Analysis reveals that the false
positive rate (FPR), defined as the percent of resultant TRACE out-
puts following binning, follows a power function (Fig. 3A). This
indicates that false positives are high when there are low numbers
of inputs during binning and vice versa. Comparison of the number
of inputs for binning between the modeled set and their correspond-
ing human donor data yielded no significant difference but trended
toward a significant increase (p 5 0.0543) (Fig. 3B), suggesting a
lower FPR across the human donor data.
Subsequent analysis of the resulting TRACE outputs from the

human donors and the corresponding modeled sets reveals that the
quality of the TRACE outputs is increased in the human donor data
(Fig. 3C, 3D). To ensure that the signal produced by TRACE was not

the product solely of a PCR artifact secondary to bulk amplification
and sequencing, we analyzed the TRACE outputs from the entirety of
the 10x dataset and its corresponding modeled sets (Fig. 3E, 3F). As
in the data from bulk sequencing, we detected an increase in TRACE
output quality as compared with the modeled set, suggestive of a con-
tribution of gene conversion independent of bulk versus single-cell
processed samples. In both original datasets, we observed a linear
trend of increasing bit score and number of mutations explained that is
not observed in either modeled set. Interestingly, we also observed a
subset of data in which large numbers of mutations are explained.
Given our analysis of false positives, we sought to characterize

the expected rate of false positives from TRACE analysis of the
entire repertoire in these donors. Overall, we saw that the average
number of binned inputs was >100 for each of the donors, except
for the 10x dataset whose average was 51.17 (Fig. 3G). Using
this, we calculated the estimated FPR using the power relation-
ship in Fig 3A. We observed that the median FPR of bulk proc-
essed data ranged between 18 and 31%, whereas the 10x dataset
was higher at 38% (Fig. 3H). Given the number of inputs and
the FPR, we then sought to compare the TRACE outputs from
the human donor and 10x repertoire to their expected number of
calculated false positives. Comparison of the TRACE outputs to
the expected number of false positives revealed that each donor
generated significantly more TRACE outputs than expected by
false positive estimation (p < 0.0001). Analysis of the 10x rep-
ertoire yielded a similar result (p < 0.0001) (Fig. 3I). Summed
analysis of the TRACE outputs from bulk (n 5 24,230) to the
total expected number of false positives (n 5 3,933) yielded an
overall calculated FPR of 16.2%. Within the 10x group, the
total number of TRACE outputs was much lower (n 5 1,014),
with a proportionally larger expected number of expected false
positives (n 5 557), yielding an overall calculated FPR of 54.9%.
Although striking, this increase in FPR in the 10x group was
expected considering the distinctly lower total number of sequen-
ces in the 10x set compared with the bulk set (n 5 15,268 and
264,548, respectively). To control for false positives in subsequent
analyses we created modeled sets for each donor, including the 10x
set, that are reflective of the overall background of the TRACE meth-
odology, are matched to each dataset, and are composed entirely of
false positives. Therefore, even within the 10x sample, we can assess
for signal despite a considerably high false-positive background.

Somatically mutated IGHV sequences receive templated tracts from
inter- and intrachromosomal templates

After confirming that TRACE outputs were significantly above
expected false-positive background, we turned to characterizing these
TRACE outputs (n 5 25,244). First, we mapped the unique locations
identified as donor tracts and observed hits from scattered regions
around the genome (Fig. 4A�C). TRACE outputs were primarily
found intrachromosomally on chromosome 14 as well as interchromo-
somally on chromosomes 15 and 16 and were statistically enriched for
donor tracts on these chromosomes as determined by permutational
analysis (Stouffer’s Z score [Zs] 5 82.78, p < 0.0001; Zs 5 9.26,
p < 0.0001; Zs 5 16.57, p < 0.0001) (Fig. 4C). Notably, we did not
observe any TRACE output on chromosome 9 between all patients.
We next assessed whether TRACE outputs cluster at the nucleo-

tide level. First, we identified the fraction of TRACE outputs that
cluster within each sample and compared this to the clustered frac-
tion in the matched modeled set. For each sample we found an over-
all increase in the number of TRACE outputs that cluster (p 5 0.016)
(Fig. 4D). Next, we calculated the number of TRACE outputs that
cluster between samples, with at least one other sample possessing an
output within 1 kb. We found that 39.4% of TRACE outputs from
the original samples clustered within 1 kb as compared with
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16.5% within the matched modeled sets (Zoriginal 5 595.18,
Zmodeled 5 175.67) (Fig. 4E). Although there are significant
areas that cluster in the modeled (i.e., false positive) set, a larger
fraction (22.9%) of TRACE outputs cluster independently of
false-positive background, suggesting that TRACE outputs orig-
inate from discrete regions of the genome. Characterization of
the types of TRACE-identified donors showed that IGHV genes
are the primary contributor of mutations observed across all
donors (p < 0.001). All other types, including IGHV pseudo-
genes, were not significant. The distribution of donor types is
shown in Fig. 4F. Taken together, these results support our ear-
lier observations in the LAIR1 Ab sequences that specific
regions of the genome serve as donor sequences and that homol-
ogy is a major determinant of donor choice.
We next sought to determine the number of mutations that

are accounted for by the TRACE methodology. Within the bulk
sequences we observed 3.22% (701), 3.75% (702), 3.59% (730),
and 4.91% (752) of mutations attributable to TRACE outputs.
These were each significantly greater than each of their respec-
tive modeled sets (p < 0.0001) (Fig. 4G). In the 10x sample, we
observed 1.29% of mutations explained by TRACE outputs,
which was also significantly higher than that observed in the

modeled set (p < 0.001). Given the discrepancy between the
bulk-processed and single cell�processed samples, we compared
these groups and found that bulk-processed samples had a sig-
nificantly greater percent of mutations explained than did the
10x sample (3.83% versus 1.29%, p < 0.0001) (Fig. 4H).
Importantly, we calculated the overall background between the
modeled sets of each sample and found the background to be
0.582% (95% confidence interval 5 0.459%, 0.705%). Consid-
ering this background, we concluded that at least 0.71% of
mutations within the 10x sample and as much as 3.25% in the
bulk sample were attributable to true positive TRACE outputs.
Quality analysis of the TRACE outputs from the bulk samples,

the 10x samples, and their respective modeled sets is shown in
Fig. 4I. Within the bulk sample, we observed an increase in the bit
score and in the number of mutations explained across all TRACE
donor types as compared with the modeled bulk sample. In the
10x sample, we observed a similar pattern only among IGHV and
intergenic donors, when compared with the modeled 10x sample.
Given that the modeled set is comprised of only false positives, we
can observe true positives present in both the bulk and 10x sam-
ples as defined by their higher bit scores and mutations explained.
We also observe TRACE donors from IGHV pseudogenes,

FIGURE 3. False-positive analysis of TRACE script indicates minimal contribution of false positives and differences in TRACE output quality. (A) Power
regression analysis of FPR as a function of TRACE inputs. Dots represent data from three IGHV datasets across three human donors. Modeled data used in
the TRACE analysis were treated as a sequence set for TRACE analysis. FPR was calculated as the percent of resultant outputs as compared with inputs
before the bin analysis and cleaning step. (B) Matched comparison of inputs before bin analysis/cleaning of modeled data used to calculate FPR and corre-
sponding data from human donor samples. Differences between each paired set are shown at right. Mean and SEM are shown in red. (C�F) Summary data of
TRACE outputs from modeled data (i.e., false positives) and from matched original datasets. Depicted are data from bulk sequencing and its corresponding
modeled data (C and D) as well as data from single cells and their corresponding modeled data (E and F). Due to the relatively low number of single cell
data, (E) and (F) depict summary data for all IGHVs in the sample. (G) Shown are inputs for somatically mutated IGHV datasets in four bulk sequenced
patients as well as 10x single0cell data. Means for each are shown in red with error bars representing SEM. (H) Calculated FPR of each dataset analyzed in
(G) from power regression shown in (A). The median for each set is shown in red. (I) Comparison of TRACE outputs from all datasets from each of the five
datasets to corresponding predicted numbers of false positives expected based on each dataset’s estimated FPR. ****p < 0.0001; n.s., not significant.
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FIGURE 4. Somatically mutated populations of Ag-experienced B cell template somatic mutations from intra- and interchromosomal regions. (A and B)
Circos plots of TRACE-identified templates that contribute to the somatic mutation profile of human donors. Circos plots correspond to (A) donor 701 and
(B) the 10x single-cell dataset. (C) Heat map depicting the number of unique TRACE outputs per human donor per chromosome. Numbers within cells indi-
cate the number of unique TRACE outputs identified for each chromosome. (D) Clustering analysis depicting the fraction (Figure legend continues)
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intergenic regions, and long noncoding RNA. These donors pri-
marily appear within the bulk sample and are perhaps secondary to
the increased sample size present. Although PCR crossover might
be expected as a confounder in the case of IGHV pseudogenes
and, to a lesser extent, long noncoding RNA, it would not be
expected in the case of the intergenic regions.

TRACE outputs correlate with multiple facets of GC B cell biology

To validate the findings of TRACE, we sought to determine whether
TRACE-identified regions correlated with GC B cell biology. As
the presumptive mechanism for these templated mutations is gene
conversion, and gene conversion donor choice is influenced by spa-
tial proximity (20), chromatin accessibility (21), and transcription
(22), we sought to elucidate whether these sites identified by
TRACE are suggestive of those used for gene conversion.
To do so, we first analyzed published Hi-C chromosome confor-

mation capture data from human GC B cells and naive B cells as
reported by Bunting et al. (17), wherein it was demonstrated that
BCL6, the key transcription factor of the GC program, mediates
widespread chromosomal rearrangement. Although the predominant
source of TRACE-identified templates originates on chromosome
14, the redundancy of the IgH locus did not allow us to resolve
intrachromosomal interactions. Instead, we analyzed interchromoso-
mal contacts between the IgH locus and the rest of the genome. For
each human donor, sites of TRACE-identified donor templates were
analyzed as a function of distance from sites of interchromosomal
interactions with the IgH locus as identified from the Hi-C data. We
observed a consistent and significant pattern in which TRACE outputs
from bulk samples were closer to sites of interchromosomal interaction
in the GC B cells than those of naive B cells (p < 0.0001 for each)
(Fig. 5A). Furthermore, these TRACE outputs were all significantly
closer than those of the matched modeled sets (p701 5 0.005, p702 5
0.02, p730 < 0.0001, p752 5 0.003). This pattern was durable from 50
kb to 10 Mb from sites of interchromosomal interaction in all four
human donors, indicating that TRACE was predictive of the GC B
cell chromosomal conformation but, importantly, not of the naive
B cell conformation. Additionally, these results suggest an effect inde-
pendent from false positives in the modeled set. Unfortunately, we did
not observe this pattern in the 10x sample, in which there was no sig-
nificant difference between the sample and its corresponding modeled
set (p 5 0.76) (Fig. 5B). This was not entirely unexpected given the
limited number of TRACE outputs found in this sample coupled with
its high FPR. To investigate whether the signal from the 10x sample
was similar to that observed in the bulk sequences, we reanalyzed the
groups as follows: 10x sample, all bulk samples, and all modeled sam-
ples. In doing so, we aimed to identify whether the 10x sample was
similar to the combined bulk samples and significantly different from
the combined modeled (Fig. 5C). We found that the 10x sample was
significantly closer to GC B cell sites of interchromosomal interaction
than the merged modeled sample (p 5 0.0006) and was not signifi-
cantly different from that the merged bulk sample (p 5 0.23). This is
suggestive, but not indicative, that the 10x sample was also able to
identify sites of interchromosomal interaction.
Next, we investigated whether TRACE-identified templates were

located within proximity of open chromatin. We assessed genome-

wide chromatin accessibility by analyzing assay for transposase-
accessible chromatin sequencing data on subsets of B lymphocytes
(23) and queried whether TRACE donor templates were located in
close proximity (within #1 kb) to open chromatin peaks. For each
bulk donor, we found that TRACE outputs were significantly
enriched within 1 kb of open chromatin peaks as compared with a
simulated null distribution an equal number of TRACE output loca-
tions (Fig. 5D). This was also true of the 10x and all but one mod-
eled set (Fig. 5E). Given that a large fraction of TRACE outputs are
IGHV gene segments, and that multiple rearrangements exist in a
population of B cells resulting in an open chromatin signal at multi-
ple IGHV sites, this was the likely confounder in this analysis.
Thus, we further analyzed whether interchromosomal donor tem-
plates were within 1 kb of open chromatin peaks. We found that
interchromosomal TRACE outputs were also significantly enriched
within 1 kb of open chromatin peaks for all bulk samples but were no
longer significant for any modeled or the 10x sample (Fig. 5F, 5G).
As before, this was expected given the low number of TRACE out-
puts present in the 10x sample. These results suggests that donor tem-
plates used for mutagenesis at the IgH locus are associated with
regions of the genome that are accessible.
We next queried whether TRACE donor templates are enriched

for genes upregulated in the GC B cells by using RNA-seq data
from Bunting et al. (17) If true, this would suggest that templates
that are used for mutagenesis are transcriptionally active during the
mutagenesis program. We found that a total of 5650 genes were
upregulated in GC B cells as compared with naive B cells and 2781
genes were downregulated. Between all five human datasets, we
found 293 non-IGHV TRACE-identified donor template�containing
genes. Of those, 205 genes were present in the naive B and GC
B cell RNA-seq data. TRACE-identified donor genes that were not
present in the dataset from Bunting et al. included noncoding RNAs
and TCR V regions, which is expected, as the studies in Bunting et al.
only examined polyadenylated transcripts. Of the 205 genes present, 78
(38%) were present in the upregulated fraction, 28 (13.7%) were con-
tained in the downregulated fraction, and the remaining 99 (48.3%)
were in genes whose expression did not change between naive and GC
B cells (Supplemental Table I). By permutational analysis, TRACE
overlap with the upregulated genes was significantly enriched above
background (Z 5 3.78, p < 0.001) as compared with the downregu-
lated genes (Z 5 0.236, p 5 0.81). Analysis of RPKM values demon-
strated that TRACE outputs were significantly associated with
upregulated genes with greater transcription (Z 5 2.37, p 5 0.018). In
the modeled set, we found a significant association between the upregu-
lated genes and modeled TRACE outputs (Z 5 4.18, p < 0.0001),
suggesting that general background could account for our observations.
However, analysis of RPKM associated with modeled TRACE outputs
did not have any association (Z 5 0.78, p 5 0.44), suggesting that the
association between transcription activity and TRACE outputs in the
original set was independent of background. Upon further analysis, we
found that regions of TRACE donor sequences that cluster between
human donors overlap with regions that undergo transcription
(Supplemental Fig. 3). Taken together, these findings suggests that
donor templates preferentially use actively transcribed genes.

of TRACE outputs that cluster within each dataset. Data are matched to the corresponding modeled dataset. (E) Clustering analysis depicting the fraction of
TRACE outputs that cluster between each dataset. Clustering between modeled datasets is also shown. Data were shuffled as in Fig. 2J (n 5 1000). (F) Bar
plot depicting the frequencies of each type of TRACE output identified template per human dataset. (G) Shown are the percent mutations explained by
TRACE for each IGHV within each human dataset. Percent mutations are also shown for matched modeled sets. (H) Percent mutations explained by TRACE
grouped by bulk sequencing versus 10x. Dashed lines represent 95% confidence interval (0.459, 0.705) of the model sets depicted in (G). (I) Density
plots for bulk-sequenced, single-cell, and respective modeled data stratified along type of TRACE output. Density plots are as shown in Fig. 2C. *p < 0.05,
***p < 0.001, ****p < 0.0001.
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FIGURE 5. TRACE hits correlate with multiple aspects of GC B cell biology. (A) Cumulative frequency plots of interchromosomal TRACE hits as a func-
tion of distance away from interchromosomal Hi-C contact points obtained from Bunting et al. (17). For each bulk human donor (patient) four curves are gen-
erated depicting the relationship between either TRACE outputs or modeled TRACE outputs and GC B cell (GCB) Hi-C data and naive B cell (NB) Hi-C
data. (B) Cumulative frequency plot for TRACE outputs from the 10x single-cell dataset and modeled 10x dataset. (C) Cumulative frequency plot for TRACE
outputs from summed bulk datasets, the 10x dataset, and summed model datasets. (D and E) Fraction of TRACE hits that are within 1 kb of open chromatin
peaks (red dot). Background data (violin plots) represents 1000 iterations of an equal number of randomly scattered TRACE hits. Heavy dashed line repre-
sents the mean, with lighter dashed lines indicating interquartile range. Z scores for each dataset are shown in (E). The red data points in (E) represent the 10x
data points and the dashed gray line indicates Z 5 1.645. (F and G) Fraction of interchromosomal TRACE hits that are within 1 kb of open chromatin peaks.
Data are shown as above. Z scores are shown in (G). (H and I) Shown are two plots depicting mutation frequency, location of (Figure legend continues)
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Having observed multiple biological correlates of TRACE-identi-
fied donor sequences, we next sought to analyze the templated muta-
genesis recipient sites. We hypothesized that recipient sites would be
proximal to sites of palindromic AID hotspots (WGCW), as AID
activity is a requirement for gene conversion in B cells (3, 6). We
investigated whether such sequences exist within IGHV gene seg-
ments and mapped sites that were identified by TRACE as recipients
of templated mutagenesis. We found that multiple WGCW sites exist
in IGHV gene segments and that, in general, TRACE events map
preferentially to regions proximal to these WGCW sites (IGHV1�69:
Zs 5 −23.87, p < 0.0001; IGHV3�15: Zs 5 17.45, p 5 1;
IGHV5�51: Zs 5 −91.16, p < 0.0001), although this was not unani-
mous, as in IGHV3�15 (Fig. 5J, Supplemental Fig. 4). Next, we
examined nonoverlapping canonical AID hotspots (WRC). We tested
whether WRC AID hotspots were associated with TRACE sites. We
selected all WRC hotspots on both strands that were not also WGCW
sites and found an association between WRC sites and TRACE sites
(IGHV1�69: Zs 5 −4.10, p < 0.0001; IGHV3�15: Zs 5 −15.12,
p < 0.0001). Unfortunately, not every sequence set could be analyzed
in this way, as some had too many WRC sites to simulate a null dis-
tribution. Despite this, the association between WRC hotspots and
TRACE sites was most pronounced in IGHV3�15, suggesting
that in some rearrangements, gene conversion may have prefer-
ence for WRC rather than WRCW hotspots.
Strikingly, we also observed that TRACE events are primarily

clustered in CDR1 and FWR3 regions, across multiple IGHV rear-
rangements isolated from different human donors, suggesting that
diversification of these regions is associated with templated muta-
genesis. To rule out any intrinsic effects of the IGHV sequence and
GC selection biases, we analyzed the LAIR1 insert (Supplemental
Fig. 5), which is a non-IGHV sequence at the IgH locus, as well as
the murine passenger transgenes from the Alt laboratory (24) that are
both free from selective pressure in addition to bearing no overt
homology to the IGHV genes (Supplemental Fig. 6). In these sequen-
ces, as well, we found a significant association between TRACE events
and the presence of the WGCW (LAIR1: Zs 5 −33.73, p < 0.0001;
GPT: Zs 5 −21.58, p < 0.0001; b-globin: Zs 5 −39.59, p < 0.0001)
and, to a lesser extent, WRC motifs (LAIR1: Zs 5 6.24, p 5 1; GPT:
Zs 5 −3.93, p < 0.0001; b-globin: Zs 5 −8.45, p < 0.0001)
(Fig. 5J�K). Taken together, these results suggest a critical role for
these motifs for templated mutagenesis and rules out any selection and/
or IGHV-specific effects.

Discussion
In this study, we demonstrate that TRACE is effective at identifying
templated mutations and localizing them to distinct regions of the
genome. We then validate these predictions by performing a thor-
ough analysis of TRACE’s FPR as well as identifying that a subset
of TRACE-identified donor sites occurs across individuals, suggest-
ing preferential utilization of certain templates distinct from back-
ground. Finally, we show that TRACE analysis of mutation data is

correlated with GC B cell biology and is predictive of upregulated
genes, chromatin accessibility, and chromosome organization in the
nucleus. Taken together, these studies suggest that somatic muta-
tions acquired during the GC reaction are to a very limited degree
templated and that such templates can originate from a variety of
ectopic sites across the genome.
From the sum of these studies, there is a clear contribution of

templated mutagenesis to SHM. This contribution, at best, remains
secondary to canonical SHM and only accounts for 0.7% of the
mutation load observed. Importantly, however, these events have an
affinity for both CDR1 and FR3, suggesting that although the over-
all contribution of these events is small, they may have important
contributions to diversifying the Ag-specific response. Indeed, in the
DT40 cell line, which is a model for gene conversion in chickens,
CDR1 is the primary site for gene conversion events (6, 25).
Our observation of templated mutation tracts that explain fewer

than eight mutations but have a high bit score suggests that tem-
plated tracts are also acted upon by canonical SHM, resulting in
untemplated mutations. Indeed, observations of gene conversion
used in B cell diversification of other species demonstrate that AID
activity can take place on existing tracts (8, 26). This further modifi-
cation of tracts may be an explanation for the discrepancy between
the quality of TRACE outputs for LAIR1-containing Abs and those
of the human donors and 10x datasets. Given the hypothesized
developmental pathway for the LAIR1-containing Ab (19, 27), it is
likely that such an Ab is repeatedly and heavily mutated before
becoming selected after acquiring the LAIR1 segment. This could
lead to “pruning” of some templated mutations within a given tract.
Selection of some of these mutations, however, allows TRACE to
still identify regions that have undergone this process. This point is
particularly supported by detection of templated tracts in LAIR1 in
association with hotspot motifs despite the relative decrease in qual-
ity of TRACE-identified donors.
By utilizing BLASTn as the mainstay of TRACE, we can readily

detect imperfect gene conversion through these obfuscating untem-
plated events. Given our ability to see these events and their contrib-
uted mutations, it would be of great interest to reanalyze the current
5 and 7 k-mer models of SHM (28, 29). In these models, local
sequence context is considered to identify preferred sequences for
untemplated hypermutation. It is notable that such models, while
broadly indicative of susceptibility to mutation, do not fully account
for observed hypermutation patterns (30, 31). If templated mutation
is occurring, as the evidence in this study suggests, its small contri-
bution to the total mutation load may be a contributing source of
residual error in these models.
Importantly, note that the data presented in the present study are

generated solely from analysis of mutations and that the predictive
capacity of TRACE is derived from nucleotide changes alone.
Unlike the other data presented in this study (i.e., assay for transpo-
sase-accessible chromatin sequencing, RNA-seq, Hi-C), these types
of data are not expected to be representative of higher order biology.
That our analyses show that TRACE can predict these higher order

TRACE hits, and location of overlapping AID hotspots for the IGHV5�51 rearrangement from human donor 701 (bulk sequencing) and the 10x single-cell
dataset. The mutation frequency plot depicts the frequency of mutation at a given position along the IGHV gene segment, independent of clonality. The plot
depicting the location of TRACE hits in recipient sequences depicts each TRACE hit as a horizontal bar indicating its length along the IGHV gene segment.
Colors used indicate intrachromosomal (magenta), interchromosomal (blue), and IGHV derived (red). Vertical shaded regions represent CDR1 and CDR2,
respectively. Unshaded areas are FR1, FR2, and FR3, respectively. The plot depicting overlapping AID hotspots depicts the location of the WGCW motif.
Each color represents a different member of WGCW: AGCT (green), AGCA (red), TGCA (cyan), and TGCT (magenta). (J and K) Z score statistics for Monte
Carlo simulations of average shortest distance between TRACE hits and overlapping AID sites (J) or nonoverlapping WRC sites (K) for IGHV1�69,
IGHV3�15, and IGHV5�51 as well as LAIR1 insertions from Tan et al. (19) and Pieper et al. (18) and unselected passenger transgenes in a mouse model of
GPT and b-globulin reported in Yeap et al. (24). Data not shown in (K) are reflective of Z scores that were unable to be calculated. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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phenotypes suggests that we are observing a mutational “etching” of
DNA reflecting the conditions of the GC B cell stage mediated
through the process of templated mutagenesis/gene conversion. This
point is further supported by our analysis of the location of TRACE
hits within each sequence, demonstrating that there is an association
with both the overlapping AID hotspot WRCW and nonoverlapping
WRC. In this study, our data suggest that gene conversion is captur-
ing these aspects of GC B cell biology at these sites of AID activity
during programmed mutagenesis.
Although these studies do correlate with B cell biology, the exact

mechanism responsible for templated mutagenesis is elusive. Homol-
ogy and proximity appear to be critical mediators, although we have
found locations throughout the genome that can serve as templates.
Studies by Pieper et al. (18) suggest that B cells are largely unre-
stricted in accessing templates at distant locations despite preference
being given to more proximal regions. Further work on gene con-
version in the context of the GC is likely needed to address such
questions.
The H and L chain Ig locus in chickens is marked by a single

functional full-length V and J segment (32, 33). Following V(D)J
recombination, secondary diversification occurs in the bursa of Fabri-
cius in which these single rearrangements are subjected to rounds of
gene conversion from an array of Ig pseudogenes located upstream
from the rearrangement (33). This secondary round of diversification
creates the naive B cell repertoire in the chicken. Gene conversion
can also serve to diversify during Ag-specific responses and is
known to occur in chicken GC B cells. Similar uses of gene conver-
sion are found in other species known to use the process, including
mammals (34�36). In the present work, we demonstrate gene con-
version in the circulating repertoire of human donors and, to a very
limited extent, in mice. As in chickens, we demonstrate that Ig
sequences can be donors for gene conversion events. Importantly, we
also demonstrate that non-Ig sequences can serve to diversify B cells,
and that these sequences are reflective of conditions within the GC,
suggesting that these exogenous sequences are used during the GC
reaction. Similar events have been reported within the context of tem-
plated insertions (18, 19, 37, 38), but to date, no such events have
been implicated as templates for mutagenesis.
Finally, we address the intuitive notion that mutating a sequence

will result in a significant match in the genome, owing to the
genome’s impressive size and complexity. By conducting a thorough
series of Monte Carlo experiments in tandem with creating a false-
positive set (i.e., the modeled sets), we show that such donors and
alignments are unlikely to arise by chance alone. Therefore, we con-
cluded these alignments have biological significance, a point we
then test in the latter studies presented in this article. Taken together,
these studies provide evidence for a distinct concerted mechanism
used to generate additional diversity in human and murine B cells,
albeit to a limited degree.
Putting the current study in the context of our earlier studies on

templated mutagenesis, we acknowledge the critique that the prior
approach by our group was susceptible to a high false-positive rate
(12, 13). Therefore, in the current study we have explicitly exam-
ined and attempted to minimize the contribution of false positives.
As such, the findings in this work should be taken as our group’s
best estimate of gene conversion to date. However, this work should
not be interpreted as a final determination of the rate of gene con-
version. Indeed, the major limitation of the TRACE approach pre-
sented in the current study is the reliance on highly mutated clusters
of mutations, a requirement necessary to determine donor templates
at the genomic scale. Our results suggest that many of the templated
events at the IgH locus arise from the locus itself. Therefore, future
work should be tailored to identifying the local contribution of the
locus to mutation patterns. It is likely that TRACE settings could be

altered to examine this relatively limited genomic region while still
maintaining a low false-positive rate.
Although many questions remain, this work highlights a rather

surprising contribution of the larger genome to the generation of
diversity in B cells and is complementary to findings from other
groups demonstrating the use of exogenous sequences for B cell
diversity (18, 19, 37, 38). This process likely has implications on Ab
maturation, and further work should be directed at understanding
both the mechanism and the functional contribution of templated
mutations during an affinity-matured response.
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